A software tool to assess uncertainty in transient-storage model parameters using Monte Carlo simulations
نویسندگان
چکیده
Researchers and practitioners alike often need to understand and characterize how water and solutes move through a stream in terms of the relative importance of in-stream and near-stream storage and transport processes. In-channel and subsurface storage processes are highly variable in space and time and difficult to measure. Storage estimates are commonly obtained using transient-storage models (TSMs) of the experimentally obtained solute-tracer test data. The TSM equations represent key transport and storage processes with a suite of numerical parameters. Parameter values are estimated via inverse modeling, in which parameter values are iteratively changed until model simulations closely match observed solute-tracer data. Several investigators have shown that TSM parameter estimates can be highly uncertain. When this is the case, parameter values cannot be used reliably to interpret stream-reach functioning. However, authors of most TSM studies do not evaluate or report parameter certainty. Here, we present a software tool linked to the One-dimensional Transport with Inflow and Storage (OTIS) model that enables researchers to conduct uncertainty analyses via Monte-Carlo parameter sampling and to visualize uncertainty and sensitivity results. We demonstrate application of our tool to 2 case studies and compare our results to output obtained from more traditional implementation of the OTIS model. We conclude by suggesting best practices for transient-storagemodeling and recommend that future applications of TSMs include assessments of parameter certainty to support comparisons and more reliable interpretations of transport processes.
منابع مشابه
Roughness uncertainty analysis in river flooding using HEC-RAS model
Although flood maps based on the deterministic approach play an important role in minimizing flood losses, there is considerable uncertainty in calculating the level of water inundation. Roughness is a key parameter in water surface elevation. Since roughness is not easily measurable and is estimated based on experimental and laboratory methods, it introduces a significant degree of uncertainty...
متن کاملبررسی عدم قطعیت مدل موازنه جرمی برای تخمین نرخ فرایندهای هوازی در محل دفن پسماندهای شهری
Background and Objective: The aim of this study was to assess the sensitivity and uncertainty analysis of a mass balance model to estimate the rate of aerobic processes in a landfill. Materials and Methods: Monte Carlo simulation is a common method to evaluate uncertainty of the results of a model. Here, we used a Monte Carlo (MC) simulation. The data obtained from the experiments were used as...
متن کاملDevelopment and implementation of a Monte Carlo frame work for evaluation of patient specific out- of - field organ equivalent dose
Background: The aim of this study was to develop and implement a Monte Carlo framework for evaluation of patient specific out-of-field organ equivalent dose (OED). Materials and Methods: Dose calculations were performed using a Monte Carlo-based model of Oncor linac and tomographic phantoms. Monte Carlo simulations were performed using EGSnrc user codes. Dose measurements were performed using r...
متن کاملSensitivity Analysis of a Wideband Backward-wave Directional Coupler Using Neural Network and Monte Carlo Method (RESEARCH NOTE)
In this paper sensitivity analysis of a wideband backward-wave directional coupler due to fabrication imperfections is done using Monte Carlo method. For using this method, a random stochastic process with Gaussian distribution by 0 average and 0.1 standard deviation is added to the different geometrical parameters of the coupler and the frequency response of the coupler is estimated. The appli...
متن کاملAn Efficiency Studying of an Ion Chamber Simulation Using Vriance Reduction Techniques with EGSnrc
Background: Radiotherapy is an important technique of cancer treatment using ionizing radiation. The determination of total dose in reference conditions is an important contribution to uncertainty that could achieve 2%. The source of this uncertainty comes from cavity theory that relates the in-air cavity dose and the dose to water. These correction factors are determined from Monte Carlo calcu...
متن کامل